WebFeb 25, 2024 · Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka. We introduce SignNet and BasisNet -- new neural architectures that are invariant to two key symmetries displayed by eigenvectors: (i) sign flips, since if is an eigenvector then so is ; and (ii) more general basis symmetries, which occur in higher ... WebQuantum computing refers (occasionally implicitly) to a "computational basis".Some texts posit that such a basis may arise from a physically "natural" choice. Both mathematics and physics require meaningful notions to be invariant under a change of basis.. So I wonder whether the computational complexity of a problem (say, the k-local Hamiltonian) …
Figure 2 from Sign and Basis Invariant Networks for Spectral …
WebBefore considering the general setting, we design neural networks that take a single eigenvector or eigenspace as input and are sign or basis invariant. These single space architectures will become building blocks for the general architectures. For one subspace, a sign invariant function is merely an even function, and is easily parameterized. WebNov 13, 2024 · Sign and Basis Invariant Networks for Spectral Graph Representation Learning. By Derek Lim*, Joshua Robinson*, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai … higby mortuary aurora
[PDF] Sign and Basis Invariant Networks for Spectral Graph ...
WebFeb 25, 2024 · Title: Sign and Basis Invariant Networks for Spectral Graph Representation Learning. Authors: Derek Lim, Joshua Robinson, Lingxiao Zhao, Tess Smidt, Suvrit Sra, Haggai Maron, Stefanie Jegelka. Download PDF WebFri Jul 22 01:45 PM -- 03:00 PM (PDT) @. in Topology, Algebra, and Geometry in Machine Learning (TAG-ML) ». We introduce SignNet and BasisNet---new neural architectures that are invariant to two key symmetries displayed by eigenvectors: (i) sign flips, since if v is an eigenvector then so is -v; and (ii) more general basis symmetries, which ... WebNov 28, 2024 · Sign and Basis Invariant Networks for Spectral Graph Representation Learning Derek Lim • Joshua David Robinson • Lingxiao Zhao • Tess Smidt • Suvrit Sra • Haggai Maron • Stefanie Jegelka. Many machine learning tasks involve processing eigenvectors derived from data. how far is carmel from santa barbara